
Bounded Hairpin Completion

Masami Ito1, Peter Leupold1?, and Victor Mitrana2??

1 Department of Mathematics, Faculty of Science
Kyoto Sangyo University, Department of Mathematics

Kyoto 603-8555, Japan
ito@cc.kyoto-su.ac.jp, leupold@cc.kyoto-su.ac.jp

2 University of Bucharest, Faculty of Mathematics and Computer Science
Str. Academiei 14, 010014, Bucharest, Romania

and
Department of Information Systems and Computation

Technical University of Valencia,
Camino de Vera s/n. 46022 Valencia, Spain

mitrana@fmi.unibuc.ro

Abstract. We consider a restricted variant of the hairpin completion
called bounded hairpin completion. The hairpin completion is a formal
operation inspired from biochemistry. Applied to a word encoding a sin-
gle stranded molecule x such that either a suffix or a prefix of x is com-
plementary to a subword of x, hairpin completion produces a new word
z, which is a prolongation of x to the right or to the left by annealing.
The restriction considered here concerns the length of all prefixes and
suffixes that are added to the current word by hairpin completion. They
cannot be longer than a given constant. Closure properties of some classes
of formal languages under the non-iterated and iterated bounded hairpin
completion are investigated. We also define the inverse operation, namely
bounded hairpin reduction, and consider the set of all primitive bounded
hairpin roots of a regular language.

1 Introduction

This paper is a continuation of a series of works started with [4] (based on some
ideas from [3]), where a new formal operation on words inspired by the DNA
manipulation called hairpin completion was introduced. That initial work has
been followed up by a several related papers ([11–14]), where both the hairpin
completion as well as its inverse operation, namely the hairpin reduction, were
further investigated.

Several problems remained unsolved in these papers. This is the mathemat-
ical motivation for the work presented here. By considering a weaker variant of
? This work was done, while the author was funded as a post-doctoral fellow by the

Japanese Society for the Promotion of Science under number P07810.
?? Work supported by the Grant-in-Aid No. 19-07810 by Japan Society for the Promo-

tion of Science

2 Masami Ito, Peter Leupold and Victor Mitrana

the hairpin completion operation, called here the bounded hairpin completion,
we hope to be able to solve some of the problems in this new setting that re-
mained unsolved in the aforementioned papers. Another motivation is a practical
one, closely related to the biochemical reality that inspired the definition of this
operation. It seems more practical to consider that the prefix/suffix added by
the hairpin completion cannot be arbitrarily long. In a laboratory every step of
a computation will have to make do with a finite amount of resources and finite
time; thus the length of the added string would be bounded by both the amount
of additional nucleic acids in the test tube and the time given for one step of
computation.

We briefly highlight some of the biological background that inspired the
definition of the Watson-Crick superposition in [3]. The starting point is the
structure of the DNA molecule. It consists of a double strand, each DNA single
strand being composed by nucleotides which differ from each other in their bases:
A (adenine), G (guanine), C (cytosine), and T (thymine). The two strands which
form the DNA molecule are kept together by relatively weak hydrogen bonds
between the bases: A always bonds with T and C with G. This phenomenon
is usually referred to as Watson-Crick complementarity. The formation of these
hydrogen bonds between complementary single DNA strands is called annealing.

A third essential feature from biochemistry is the PCR (Polymerase Chain
Reaction). From two complementary, annealed strands, where one is shorter than
the other, it produces a complete double stranded DNA molecule as follows:
enzymes called polymerases add the missing bases (if they are available in the
environment) to the shorter strand called primer and thus turn it into a complete
complement of the longer one called template.

We now informally explain the superposition operation and how it can be
related to the aforementioned biochemical concepts. Let us consider the following
hypothetical biological situation: two single stranded DNA molecules x and y are
given such that a suffix of x is Watson-Crick complementary to a prefix of y or a
prefix of x is Watson-Crick complementary to a suffix of y, or x is Watson-Crick
complementary to a subword of y. Then x and y get annealed in a DNA molecule
with a double stranded part by complementary base pairing and then a complete
double stranded molecule is formed by DNA polymerases. The mathematical
expression of this hypothetical situation defines the superposition operation.
Assume that we have an alphabet and a complementary relation on its letters.
For two words x and y over this alphabet, if a suffix of x is complementary to a
prefix of y or a prefix of x is complementary to a suffix of y, or x is complementary
to a subword of y, then x and y bond together by complementary letter pairing
and then a complete double stranded word is formed by the prolongation of x
and y. Now the word obtained by the prolongation of x is considered to be the
result of the superposition applied to x and y. Clearly, this is just a mathematical
operation that resembles a biological reality considered here in an idealized way.

On the other hand, it is known that a single stranded DNA molecule might
produce a hairpin structure, a phenomenon based on the first two biological
principles mentioned above. Here one part of the strand bonds to another part

Bounded Hairpin Completion 3

of the same strand. In many DNA-based algorithms, these DNA molecules often
cannot be used in the subsequent steps of the computation. Therefore it has
been the subject of a series of studies to find encodings that will avoid the
formation of hairpins, see e.g. [5–7] or [10] and subsequent work for investigations
in the context of Formal Languages. On the other hand, those molecules which
may form a hairpin structure have been used as the basic feature of a new
computational model reported in [18], where an instance of the 3-SAT problem
has been solved by a DNA-algorithm whose second phase is mainly based on the
elimination of hairpin structured molecules.

We now consider again a hypothetical biochemical situation: we are given
one single stranded DNA molecule z such that either a prefix or a suffix of z is
Watson-Crick complementary to a subword of z. Then the prefix or suffix of z and
the corresponding subword of z get annealed by complementary base pairing and
then z is lengthened by DNA polymerases up to a complete hairpin structure.
The mathematical expression of this hypothetical situation defines the hairpin
completion operation. By this formal operation one can generate a set of words,
starting from a single word. This operation is considered in [4] as an abstract
operation on formal languages. Some algorithmic problems regarding the hairpin
completion are investigated in [11]. In [12] the inverse operation to the hairpin
completion, namely the hairpin reduction, is introduced and one compares some
properties of the two operations. This comparison is continued in [13], where
a mildly context-sensitive class of languages is obtained as the homomorphic
image of the hairpin completion of linear context-free languages. This is, to our
best knowledge, the first class of mildly context-sensitive languages obtained in
a way that does not involve grammars or acceptors.

In the aforementioned papers, no restriction is imposed on the length of the
prefix or suffix added by the hairpin completion. This fact seems rather unrealis-
tic though this operation is a purely mathematical one and the biological reality
is just a source of inspiration. On the other hand, several natural problems
regarding the hairpin completion remained unsolved in the papers mentioned
above. A usual step towards solving them might be to consider a bit less general
setting and try to solve the problems in this new settings. Therefore, we con-
sider here a restricted variant of the hairpin completion, called bounded hairpin
completion. This variant assumes that the length of the prefix and suffix added
by the hairpin completion is bounded by a constant.

2 Basic definitions

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly the notions of grammar and
finite automaton [16] and basics from the theory of abstract families of languages
[19].

An alphabet is always a finite set of letters. For a finite set A we denote by
card(A) the cardinality of A. The set of all words over an alphabet V is denoted
by V ∗. The empty word is written λ; moreover, V + = V ∗ \ {λ}. Two languages

4 Masami Ito, Peter Leupold and Victor Mitrana

are considered to be equal if they contain the same words with the possible
exception of the empty word.

A concept from the theory of abstract families of languages that we will refer
to is that of a trio. This is is a non-empty family of languages closed under non-
erasing morphisms, inverse morphisms and intersection with regular languages.
A trio is full if it is closed under arbitrary morphisms.

Given a word w over an alphabet V , we denote by |w| its length, while |w|a
denotes the number of occurrences of the letter a in w. If w = xyz for some
x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix, respectively, of w. For
a word w, w[i..j] denotes the subword of w starting at position i and ending at
position j, 1 ≤ i ≤ j ≤ |w|. If i = j, then w[i..j] is the i-th letter of w which is
simply denoted by w[i].

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe
of the alphabets in this paper, i.e., all words and languages are over alphabets
that are subsets of Ω. An involution over a set S is a bijective mapping σ :
S −→ S such that σ = σ−1. Any involution σ on Ω such that σ(a) 6= a for
all a ∈ Ω is said to be a Watson-Crick involution. Despite the fact that this
is nothing more than a fixed point-free involution, we prefer this terminology
since the hairpin completion defined later is inspired by the DNA lengthening
by polymerases, where the Watson-Crick complementarity plays an important
role. Let · be a Watson-Crick involution fixed for the rest of the paper. The
Watson-Crick involution is extended to a morphism from Ω to Ω∗ in the usual
way. We say that the letters a and a are complementary to each other. For an
alphabet V , we set V = {a | a ∈ V }. Note that V and V can intersect and they
can be, but need not be, equal. Recall that the DNA alphabet consists of four
letters, VDNA = {A,C,G, T}, which are abbreviations for the four nucleotides
and we may set A = T , C = G.

We denote by (·)R the mapping defined by R : V ∗ −→ V ∗, (a1a2 . . . an)R =
an . . . a2a1. Note that R is an involution and an anti-morphism ((xy)R = yRxR

for all x, y ∈ V ∗). Note also that the two mappings · and ·R commute, namely,
for any word x, (x)R = xR holds.

The reader is referred to [4] or any of the subsequent papers [11–14] for the
definition of the (unbounded) k-hairpin completion; it is essentially the same as
for the bounded variant defined below, only without the bound |γ| ≤ p. Thus
the prefix or suffix added by hairpin completion can be arbitrarily long. By the
mathematical and biological reasons mentioned in the introductory part, in this
work we are interested in a restricted variant of this operation that allows only
prefixes and suffixes of a length bounded by a constant to be added. Formally,
if V is an alphabet, then for any w ∈ V + we define the p-bounded k-hairpin
completion of w, denoted by pHCk(w), for some k, p ≥ 1, as follows:

pHC xk (w) = {γRw|w = αβαRγ, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}
pHC yk (w) = {wγR|w = γαβαR, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}

pHCk(w) = HC xk (w) ∪HC yk (w).

Bounded Hairpin Completion 5

This operation is schematically illustrated in Figure 1.

α

βαRγ
γR

Figure 1: Bounded hairpin completion

α

βαRγR
γ

The p-bounded hairpin completion of w is defined by

pHC(w) =
⋃
k≥1

pHCk(w).

As above, the p-bounded hairpin completion operation is naturally extended to
languages by

pHCk(L) =
⋃
w∈L

pHCk(w) pHC(L) =
⋃
w∈L

pHC(w).

The iterated version of the p-bounded hairpin completion is defined in a similar
way to the unbounded case, namely:

pHC0
k(w) = {w}, pHC0(w) = {w},

pHCn+1
k (w) = pHCk(pHCnk (w)), pHCn+1(w) = pHC(pHCn(w)),

pHC∗k(w) =
⋃
n≥0 pHC

n
k (w), pHC∗(w) =

⋃
n≥0 pHC

n(w),
pHC∗k(L) =

⋃
w∈L pHC

∗
k(w), pHC∗(L) =

⋃
w∈L pHC

∗(w).

3 The non-iterated case

The case of bounded hairpin completion is rather different in comparison to the
unbounded variant considered in [11–14]. As it was expected, the closure problem
of any trio under bounded hairpin completion is simple: every (full) trio is closed
under this operation.

Proposition 1 Every (full) trio is closed under p-bounded k-hairpin completion
for any k, p ≥ 1.

Proof. It is sufficient to consider a generalized sequential machine (gsm) that
adds a suffix (prefix) of length at most p to its input provided that its prefix
(suffix) satisfies the conditions from the definitions. As every trio is closed under
gsm mappings, see [19], we are done. 2

We recall that neither the class of regular languages nor that of context-
free languages is closed under unbounded hairpin completion. By the previous
theorem, both classes are closed under bounded hairpin completion.

On the other hand, in [11] it was proved that if the membership problem for
a given language L is decidable in O(f(n)), then the membership problem for
the hairpin completion of L is decidable in O(nf(n)) for any k ≥ 1. Further,

6 Masami Ito, Peter Leupold and Victor Mitrana

the factor n is not needed for the class of regular languages, but the problem
of whether or not this factor is needed for other classes remained open in [11].
An easy adaption of the algorithm provided there shows that this factor is never
needed in the case of bounded hairpin completion and thus membership is always
decidable in O(f(n)); presenting the adapted algorithm would exceed the scope
of this work, though.

4 The iterated case

As in non-iterated case, the iterated bounded hairpin completion offers also a
rather different picture of closure properties in comparison to the unbounded
variant considered in the same papers cited above. We start with a general
result.

Theorem 1 Let p, k ≥ 1 and F be a (full) trio closed under substitution.
Then F is closed under iterated p-bounded k-hairpin completion if and only if
pHC∗k(w) ∈ F for any word w.

Proof. The “only if” part is obvious as any trio contains all singleton languages.
For the “if” part, let L ∈ F be a language over the alphabet V . We write

L = L1 ∪ L2, where

L1 = {x ∈ L | |x| < 2(k + p) + 1},
L2 = {x ∈ L | |x| ≥ 2(k + p) + 1}.

Clearly, pHC∗k(L) = pHC∗k(L1) ∪ pHC∗k(L2). As any trio contains all finite
languages, it follows that any trio closed under substitution is closed under
union. Therefore, as L1 is a finite language, we conclude that pHC∗k(L1) ∈ F .
Consequently, it remains to show that pHC∗k(L2) ∈ F .

Let α, β ∈ V + be two arbitrary words with |α| = |β| = k + p. We define
L2(α, β) = L2 ∩ {α}V +{β}. We have that

L2 =
⋃

|α|=|β|=k+p

L2(α, β) and pHC∗k(L2) =
⋃

|α|=|β|=k+p

pHC∗k(L2(α, β)).

On the other hand, it is plain that pHC∗k(L2(α, β)) = s(pHC∗k(αXβ)), where
X is a new symbol not in V and s is a substitution s : (V ∪ {X})∗ −→ 2V

∗

defined by s(a) = {a} for all a ∈ V and s(X) = {w ∈ V + | αwβ ∈ L2(α, β)}.
The language {w ∈ V + | αwβ ∈ L2(α, β)} is in F (even F is not full) as it
is the image of a language from F , namely L2(α, β), through a gsm mapping
that deletes both the prefix and suffix of length k+ p of the input word. By the
closure properties of F , it follows that pHC∗k(L2(α, β)) is in F for any α, β as
above, which completes the proof. 2

We recall that none of the families of regular, linear context-free, and context-
free languages is closed under iterated unbounded hairpin completion. Here the
bounded hairpin completion is much more tractable.

Bounded Hairpin Completion 7

Corollary 1 The family of context-free languages is closed under iterated p-
bounded k-hairpin completion for any k, p ≥ 1.

Proof. By the previous result, it suffices to prove that pHCk(w) is context-free
for any word w. Given w ∈ V +, we construct the arbitrary grammar G =
({S,X}, V ∪ {#}, S, P), where the set of productions P contains the following
rules:

P = {S → yXz | w = zy} ∪ {zRyXz → zRyXyRz | 1 ≤ |y| ≤ p, |z| = k}
∪ {zRXyz → zRyRXyz | 1 ≤ |y| ≤ p, |z| = k} ∪ {X → #}.

By a result of Baker (see [1]), the language generated by G is context-free.
Further we have that pHC∗k(w) = h(cp(L(G)) ∩ V +{#}). Here cp maps every
word in the set of all its circular permutations and every language in the set of
all circular permutations of its words, while h is a morphism that erases # and
leaves unchanged all letters of V . As the class of context-free languages is closed
under circular permutation [17], we infer that pHC∗k(w) is context-free. 2

The above argument does not work for the class of linear context-free lan-
guages as this class is known not to be closed under circular permutation. How-
ever, also this family is closed under iterated bounded hairpin completion.

Theorem 2 The family of linear context-free languages is closed under iterated
p-bounded k-hairpin completion for any k, p ≥ 1.

Proof. Let L be a language generated by the linear grammar G = (N,T, S, P).
We construct the linear grammar G′ = (N ′, T, S′, P ′), where

N ′ = N ∪ {S′} ∪ {[α, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α,A, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p,A ∈ N},

and the set of productions P ′ is defined by (in the definition of every set α, β ∈
T ∗, 0 ≤ |α|, |β| ≤ k + p,A ∈ N holds):

P ′ = P ∪ {S′ → S} ∪ {S′ → [α, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α, β]→ [α′, β′]yR | α = α′ = yvw, β = uvRyR, |v| = k, |y| ≤ p,
β′ = xuvR, x ∈ T ∗, |β′| ≤ k + p}

∪ {[α, β]→ y[α′, β′]yR | α = yvw, β = β′ = uvRyR, |v| = k, |y| ≤ p,
α′ = vwx, x ∈ T ∗, |α′| ≤ k + p}

∪ {[α, β]→ [α, S, β] | α, β ∈ T ∗, 0 ≤ |α|, |β| ≤ k + p}
∪ {[α,A, β]→ x[α′, B, β′]y | A→ xBy ∈ P, α = xα′, β = β′y, α′, β′ ∈ T ∗}
∪ {[α,A, β]→ αx[λ,B, β′]y | A→ αxBy ∈ P, β = β′y, β′ ∈ T ∗}
∪ {[α,A, β]→ x[α′, B, λ]yβ | A→ xByβ ∈ P, α = xα′, α′ ∈ T ∗}
∪ {[λ,A, λ]→ A | A ∈ N}.

It is rather easy to note that we have the derivation

S′ =⇒∗ x[α, β]y =⇒ x[α, S, β]y =⇒∗ xαwβy

8 Masami Ito, Peter Leupold and Victor Mitrana

in G′ if and only if S =⇒∗ αwβ in G and xαwβy ∈ pHC∗k(αwβ). This concludes
the proof. 2

The problem of whether or not the iterated unbounded hairpin completion
of a word is context-free is open. By the previous result, it follows that the
iterated bounded hairpin completion of a word is always linear context-free. We
do not know whether this language is always regular. More generally, the status
of the closure under iterated bounded hairpin completion of the class of regular
languages remains unsettled.

We finish this section with another general result.

Theorem 3 Every trio closed under circular permutation and iterated finite
substitution is closed under iterated bounded hairpin completion.

Proof. We take two positive integers k, p ≥ 1. Let F be a family of languages
with the above properties and L ⊆ V ∗ be a language in F . Let L1 be the circular
permutation of L{#}, where # is a new symbol not in V . Clearly, L1 still lies
in F . We consider the alphabet W = {[x#y] | x, y ∈ V ∗, 0 ≤ |x|, |y| ≤ p + k}
and define the morphism h : (W ∪ V)∗ −→ (V ∪ {#}∗ by h([x#y]) = x#y, for
any [x#y] ∈ W , and h(a) = a, for any a ∈ V . We now consider the language
L2 ∈ F given by L2 = h−1(L1). By the closure properties of F , the language
L3 = s∗(L2) is in F , where s is the finite substitution s : (W ∪V)∗ −→ 2(W∪V)∗

defined by s(a) = {a}, a ∈ V, and s([x#y]) = {x#y} ∪R with

R = {[x#uRy] | x = vzu, y = zRw, u, v, z, w ∈ V ∗, |z| = k,

|uRy| ≤ p+ k, |u| ≤ p} ∪
{[x#uRy′]y′′ | x = vzu, y = zRw = y′y′′, u, v, z, w, y′, y′′ ∈ V ∗, |z| = k,

|uRy′| = p+ k, |u| ≤ p}} ∪
{[xuR#y] | x = wzR, y = uzv, u, v, z, w ∈ V ∗, |z| = k,

|xuR| ≤ p+ k, |u| ≤ p}} ∪
{x′′[x′uR#y] | x = wzR = x′′x′, y = uzv, u, v, z, w, x′, x′′ ∈ V ∗, |z| = k,

|x′uR| = p+ k, |u| ≤ p}}.

Finally, let L4 be the circular permutation of h(L3). Then we obtain that
pHC∗k(L) = g(L4 ∩ V ∗{#}), where g is a morphism that removes # and leaves
unchanged all symbols from V . 2

5 An inverse operation: the bounded hairpin reduction

We now define the inverse operation of the bounded hairpin completion, namely
the bounded hairpin reduction in a similar way to [13], where the unbounded
hairpin reduction is introduced. Let V be an alphabet, for any w ∈ V + we define
the p-bounded k-hairpin reduction of w, denoted by pHRk(w), for some k, p ≥ 1,
as follows:

pHR 	k (w) = {αβαRγR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +, 1 ≤ |γ| ≤ p},

Bounded Hairpin Completion 9

pHR �k (w) = {γαβαR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +, 1 ≤ |γ| ≤ p}.
pHRk(w) = pHR 	k (w) ∪ pHR � (w).

The p-bounded hairpin reduction of w is defined by

pHR(w) =
⋃
k≥1

pHRk(w).

The bounded hairpin reduction is naturally extended to languages by

pHRk(L) =
⋃
w∈L

pHRk(w) pHR(L) =
⋃
w∈L

pHR(w).

The iterated bounded hairpin reduction is defined analogously to the iterated
bounded hairpin completion.

We recall that the problem of whether or not the iterated unbounded hairpin
reduction of a regular language is recursively decidable is left open in [13]. The
same problem for the iterated bounded hairpin reduction is now completely
solved by the next more general result. Before stating the result, we need to recall
a few notions about string-rewriting systems. To this aim, we follow the standard
notations for string rewriting as in [2]. A string-rewriting system (SRS) over an
alphabet V is a finite relation R ⊂ V ∗×V ∗, and the rewrite relation induced by
R is denoted by −→R. That is, we write x −→R y if x = uvw, y = uzw, for some
u, v, z, w ∈ V ∗, and (v, z) ∈ R. As usual every pair (v, z) ∈ R is referred to as a
rule v → z. The reflexive and transitive closure of −→R is denoted by −→∗R. We
use R∗(L) for the closure of the language L under the string-rewriting system R.
Formally, R∗(L) = {w | x −→∗R w, for some x ∈ L}. A rule v → z is said to be
monadic if it is length-reducing (|v| > |z|) and |z| ≤ 1. A SRS is called monadic
if all its rules are monadic. A class of languages F is closed under monadic SRS
if for any language L ∈ F over some alphabet V and any monadic SRS R over
V , R∗(L) ∈ F holds.

Theorem 4 Every trio closed under circular permutation and monadic string-
rewriting systems is closed under iterated bounded hairpin reduction.

Proof. Let F be a trio and k, p be two positive integers. The central idea of the
proof is as follows. We permute every word of a language in F in a circular way.
Then the last and first letters are next to each other. Thus the hairpin reduction
becomes a local operation and can be simulated by monadic string-rewriting
rules. By our hypothesis, these are known to preserve the membership in F .

To start with, we attach a new symbol X to the end of every word of a
given L ∈ F , L ⊆ V ∗. Then we obtain the language L′ by doing a circular
permutation to all words in L{X}. Note that X marks the end and beginning of
the original words. On this language we apply a gsm-mapping g that introduces
redundancy by adding to every letter information about its neighboring letters
in the following way:

1. The letter containing the X contains also the k+ p letters to the left and to
the right of X in order.

10 Masami Ito, Peter Leupold and Victor Mitrana

2. Every letter left of X contains the letter originally at that position and the
k + p letters left of it in order.

3. Every letter right of X contains the letter originally at that position and the
k + p letters right of it in order.

At the word’s end and its beginning, where there are not enough letters to fill the
symbols, some special symbol signifying a space is placed inside the compound
symbols.

Now we can simulate a step of p-bounded k-hairpin reduction by a string-
rewriting rule with a right-hand side of length one, i.e. a monadic one. A straight-
forward approach would be to use rules of the form uvRXvuR → uXvuR. But
we see that u and XvuR are basically not changed, they only form a context
whose presence is necessary. Through our redundant representation of the word,
their presence can be checked by looking only at the corresponding image of
X under g. Further, since the symbols of the image of u under g contain only
information about symbols to their left, they do not need to be updated after
the deletion of vR to preserve the properties 1 to 3. The same is true for vuR.
Only in the symbol corresponding to X some updating needs to be done and
thus it is the one that is actually rewritten. So the string rewriting rules are

gleft(z0z1uv)[1 . . . |v|][z1uvXvuz2]→ [z0z1uXvuz2],

where gleft does the part of g described by property 2, and where z0, z1 ∈ V ∗,
u, v ∈ V +, |u| = k, |v| ≤ p, |z0z1u| = p+k. Analogously, rules that delete symbols
to the right ofX are defined. LetR be the string-rewriting system consisting of all
such rules. It is immediate that w′ ∈ pHRk(w) ⇔ g(cp(wX))→R g(cp(w′X))
and by induction w′ ∈ pHR∗k(w) ⇔ g(cp(wX))→∗R g(cp(w′X)).

Therefore, at this point we have all circular permutations of words that can
be reached by p-bounded k-hairpin reduction from words in L coded under g.
To obtain our target language we first undo the coding of g by the gsm-mapping
g′ that projects all letters to the left of X to their last component, all letters
to the right of X to their first component, and the symbol containing X to just
X. This mapping is letter-to-letter, the gsm only needs to remember in its state
whether is has already passes over the symbol containing X. Of the result of this
we take again the circular permutation.

Now we filter out the words that have X at the last position and therefore
are back in the original order of L and delete X. By the closure properties of F ,
the result of this process lies in F , which completes the proof. 2

As monadic SRSs are known to preserve regularity (see [8]) we immediately
infer that

Theorem 5 The class of regular languages is closed under iterated bounded
hairpin reduction.

In [12] one considers another concept that seems attractive to us, namely the
primitive hairpin root of a word and of a language. Given a word x ∈ V ∗ and a

Bounded Hairpin Completion 11

positive integer k, the word y is said to be the primitive k-hairpin root of x if
the following two conditions are satisfied:

(i) y ∈ HR∗k(x)(or, equivalent, x ∈ HC∗k(y)),
(ii) HRk(y) = ∅.

Here HR∗k(z) delivers the iterated unbounded hairpin reduction of the word z. In
other words, y can be obtained from x by iterated k-hairpin reduction (maybe in
zero steps) and y cannot be further reduced by hairpin reduction. The primitive
bounded hairpin root is defined analogously. Clearly, a word may have more than
one primitive bounded hairpin root; the set of all primitive p-bounded k-hairpin
roots of a word x is denoted by pHkroot(x). Naturally, the primitive p-bounded
k-hairpin root of a language L is defined by pHkroot(L) =

⋃
x∈L

pHkroot(x).

Clearly, to see whether a word is reducible, one has to look only at the first
and last k + p symbols. By Theorem 5 we have:

Theorem 6 pHkroot(L) is regular for any regular language L and any p, k ≥ 1.

Proof. For the regular language L′ ⊆ V ∗ obtained in the proof of Theorem 5 it
suffices to consider the language

{w ∈ L | |w| ≤ 2k+2}∪ (pHR∗k(L)∩{αxβ | |α| = |β| = k+1, α 6= β
R
, x ∈ V +})

which is regular and equals pHkroot(L). 2

6 Final remarks

We have considered a restricted version of the hairpin completion operation by
imposing that the prefix or suffix added by the hairpin completion are bounded
by a constant. In some sense, this is the lower extreme case the upper extreme
being the unbounded case that might be viewed as a linearly bounded variant.
We consider that bounded variants by other sublinear mappings would be of
theoretical interest.

Last but not least we would like to mention that hairpin completion and
reduction resemble some language generating mechanisms considered in the lit-
erature like external contextual grammars with choice [15] or dipolar contextual
deletion [9], respectively.

References

1. Baker, B.S: Context-sensitive grammars generating context-free languages. In Au-
tomata, Languages and Programming ICALP 1972. North-Holland, Amsterdam
(1972) 501–506.

2. Book, R., Otto, F.: String-Rewriting Systems. Springer-Verlag (1993).
3. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-

Crick-like complementarity. Theory of Computing Systems 39 (2006) 503–524.

12 Masami Ito, Peter Leupold and Victor Mitrana

4. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested by
DNA biochemistry: hairpin completion. In Transgressive Computing (2006) 216–
228.

5. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good
encodings for DNA-based solutions to combinatorial problems. In Proc. of DNA-
based computers II. DIMACS Series 44 (1998) 247–258.

6. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens,
S.E.: On the encoding problem for DNA computing. In The Third DIMACS Work-
shop on DNA-Based Computing. Univ. of Pennsylvania (1997) 230–237.

7. Garzon, M., Deaton, R., Nino, L.F., Stevens, S.E., Wittner, M.: Genome encoding
for DNA computing. In Proc. Third Genetic Programming Conference. Madison,
MI (1998) 684–690.

8. Hofbauer, D., Waldmann, J.: Deleting string-rewriting systems preserve regularity.
Theoretical Computer Science 327 (2004) 301-317.

9. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Informa-
tion and Computation 131 (1996) 47–61.

10. Kari, L., Konstantinidis, S., Sośık, P., Thierrin, G.: On hairpin-free words and
languages. In Developments in Language Theory 2005. Vol. 3572 of LNCS. Springer-
Verlag (2005) 296–307.

11. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems
regarding the hairpin completion. Discrete Applied Mathematics (in press),
doi:10.1016/j.dam.2007.09.022.

12. Manea, F., Mitrana, V.: Hairpin completion versus hairpin reduction. In Compu-
tation in Europe CiE 2007. Vol. 4497 of LNCS. Springer-Verlag (2007) 532-541.

13. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired
by the DNA hairpin formation: completion and reduction. Theoretical Computer
Science, (in press), doi:10.1016/j.tcs.2008.09.049.

14. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion.
In Proc. 12th International Conference on Automata and Formal Languages (2008)
302–313.

15. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14 (1969)
1525–1534.

16. Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages. Springer-
Verlag (1997).

17. Ruohonen, K.: On circular words and (ω∗ + ω)-powers of words. Elektr. Inform.
und Kybern. E.I.K. 13 (1977) 3–12.

18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,
Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288 (2000)
1223–1226.

19. Salomaa, A.: Formal Languages. Academic Press (1973).

